The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis.

نویسندگان

  • Dimitrios J Stavropoulos
  • Paul S Bradshaw
  • Xiaobin Li
  • Ivan Pasic
  • Kevin Truong
  • Mitsuhiko Ikura
  • Mark Ungrin
  • M Stephen Meyn
چکیده

Telomerase-negative immortalized human cells maintain telomeres by alternative lengthening of telomeres (ALT) pathway(s), which may involve homologous recombination. We find that endogenous BLM protein co-localizes with telomeric foci in ALT human cells but not telomerase positive immortal cell lines or primary cells. BLM interacts in vivo with the telomeric protein TRF2 in ALT cells, as detected by FRET and co-immunoprecipitation. Transient over-expression of green fluorescent protein (GFP)-BLM results in marked, ALT cell-specific increases in telomeric DNA. The association of BLM with telomeres and its effect on telomere DNA synthesis require a functional helicase domain. Our results identify BLM as the first protein found to affect telomeric DNA synthesis exclusively in human ALT cells and suggest that BLM facilitates recombination-driven amplification of telomeres in ALT cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2.

In addition to increased DNA-strand exchange, a cytogenetic feature of cells lacking the RecQ-like BLM helicase is a tendency for telomeres to associate. We also report additional cellular and biochemical evidence for the role of BLM in telomere maintenance. BLM co-localizes and complexes with the telomere repeat protein TRF2 in cells that employ the recombination-mediated mechanism of telomere...

متن کامل

BLM helicase facilitates telomere replication during leading strand synthesis of telomeres

Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome-associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initia...

متن کامل

Association of BLM and BRCA1 during Telomere Maintenance in ALT Cells

Fifteen percent of tumors utilize recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. The mechanisms underlying ALT are unclear but involve several proteins involved in homologous recombination including the BLM helicase, mutated in Bloom's syndrome, and the BRCA1 tumor suppressor. Cells deficient in either BLM or BRCA1 have phenotypes consistent with telomere ...

متن کامل

Strand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifically stimulated by TRF2

Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underl...

متن کامل

The G-Quadruplex Ligand Telomestatin Impairs Binding of Topoisomerase IIIα to G-Quadruplex-Forming Oligonucleotides and Uncaps Telomeres in ALT Cells

In Alternative Lengthening of Telomeres (ALT) cell lines, specific nuclear bodies called APBs (ALT-associated PML bodies) concentrate telomeric DNA, shelterin components and recombination factors associated with telomere recombination. Topoisomerase IIIalpha (Topo III) is an essential telomeric-associated factor in ALT cells. We show here that the binding of Topo III to telomeric G-overhang is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 11 25  شماره 

صفحات  -

تاریخ انتشار 2002